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Abstract: Background: With 11 million sepsis-related deaths worldwide, the development
of tools for early prediction of sepsis onset in hospitalized patients is a global health priority.
We developed a machine learning algorithm, capable of detecting the early onset of sepsis
in all hospital departments. Methods: Predictors of sepsis from 45,127 patients from all
departments of Valenciennes Hospital (France) were retrospectively collected for training.
The binary classifier SEPSI Score for sepsis prediction was constructed using a gradient
boosted trees approach, and assessed on the study dataset of 5270 patient stays, including
121 sepsis cases (2.3%). Finally, the performance of the model and its ability to detect
early sepsis onset were evaluated and compared with existing sepsis scoring systems.
Results: The mean positive predictive value of the SEPSI Score was 0.610 compared to
0.174 for the SOFA (Sepsis-related Organ Failure Assessment) score. The mean area under
the precision–recall curve was 0.738 for SEPSI Score versus 0.174 for the most efficient score
(SOFA). High sensitivity (0.845) and specificity (0.987) were also reported for SEPSI Score.
The model was more accurate than all tested scores, up to 3 h before sepsis onset. Half
of sepsis cases were detected by the model at least 48 h before their medically confirmed
onset. Conclusions: The SEPSI Score model accurately predicted the early onset of sepsis,
with performance exceeding existing scoring systems. It could be a valuable predictive tool
in all hospital departments, allowing early management of sepsis patients. Its impact on
associated morbidity-mortality needs to be further assessed.

Keywords: sepsis; machine learning; algorithm; early prediction

1. Introduction
Sepsis remains a major cause of morbidity and mortality worldwide, with an esti-

mated 49 million cases of sepsis and 11 million sepsis-related deaths occurred worldwide
in 2017, accounting for approximately 20% of all-cause deaths globally [1,2]. Future pro-
jections predict that the number of sepsis cases will double in the next 50 years due to
an ageing population [1,3]. In the past few decades, the high prevalence of sepsis and its
high economic impact have led to the development of several projects intended to allow
better recognition and more accurate description of the course of the disease [4]. The new
Sepsis-3 definitions underline the concept of a dysregulated immune response resulting in
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potentially modifiable life-threatening organ dysfunction [5]. In 2017, the World Health
Assembly and the World Health Organization made a sepsis global health priority by
adopting a resolution to improve, prevent, diagnose, and manage sepsis [6]. Indeed, the
development of tools to predict sepsis, and particularly the early detection of sepsis, is criti-
cal as a one-hour delay in sepsis diagnosis is associated with a 7% reduction in survival [7].
There are several international scoring systems for sepsis detection including the Systemic
Inflammatory Response Syndrome (SIRS) [8], the Sepsis-related Organ Failure Assessment
(SOFA) scoring system [9,10], the Modified Early Warning Score (MEWS) [11,12], and quick
SOFA score (qSOFA) [5,12]. It has however been stated that no scoring system had both
high sensitivity and specificity for predicting the accuracy of mortality in patients with
suspected sepsis [13]. Therefore, it has been recommended against using qSOFA compared
to SIRS or MEWS as a single screening tool for sepsis [14,15]. Although useful these manual
screening tools are found to suffer from limitations that can induce diagnostic and plan of
care delays and impact the patient outcomes.

In contrast, automated screening tools that have been recently developed over the last
few years have the potential to decrease diagnostic delays and increase screen accuracy.
Several predictive models for sepsis have been developed using machine learning (ML)
algorithms [16–21]. Both retrospective and prospective studies have shown that imple-
mentation of the InSight® (Dascena, San Francisco, CA, USA) algorithm [20,22] for sepsis
management reduced sepsis-related hospital length of stay by 10% [23] or by 2.3 days [20].
More recently, a 32% reduction in hospital length of stay has been reported in a multi-site
prospective real-world data study [22]. However, the detection of sepsis by ML algorithms
is still a work in progress as they can miss up to 67% of sepsis cases [24]. Currently, there is
limited real-world implementation of these models in clinical settings. To ensure these tools
can be reliably used across different patient populations, more clinical implementation
studies are needed [17]. Notably, the main limitation of these predictive models is the lack
of external validation to ensure reproducibility and generalizability [25], while most of
them have focused on intensive care unit (ICU) populations [20].

Retrospective studies have shown that machine learning models can effectively predict
sepsis onset with strong accuracy and the models’ success largely depends on incorporating
clinically relevant variables for sepsis detection [17]. However, the development and
implementation of sepsis prediction models with datasets of hospital inpatients from all
departments is still limited. Furthermore, more efficient prediction tools are still warranted
to have a significant impact on the survival of sepsis patient. The aim of this study was
to develop and validate a ML model, the SEPSI Score algorithm, to accurately predict the
early onset of sepsis in hospitalized patients from all departments.

2. Materials and Methods
2.1. Study Design and Setting

The data were retrospectively collected from the electronic health records (EHR) of
hospital inpatients admitted to all departments of the Hospital of Valenciennes (CHV,
Valenciennes, France) (including intensive care unit, emergency department, surgical
department, and all hospital departments where sepsis cases occurred), for both the training
and the study datasets.

2.1.1. Study Population

Patients were selected based on the following inclusion/exclusion (i./e.) criteria: (i.1)
Adult patient (18 years old or older); (i.2) At least one SOFA-related Observation recorded;
(i.3) At least five out of six vital signs documented; (i.4) Length of stay between 2 and
100 days (inclusive); (i.5) Onset of sepsis detected by a 2-point increase in the SOFA score,
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at least 3 h after hospital admission; (e.1) Missing International Classification of Diseases
10th edition (ICD-10) data; (e.2) Gender unknown; (e.3) No Observation recorded for vital
signs and laboratory results.

2.1.2. Data Source

Data were extracted using a hospital-hosted Fast Healthcare Interoperability Resources
(FHIR) server, implemented and connected to the hospital EHR and the ICD-10 coding
solution, a standardized system used to code diseases and medical conditions (morbidity)
data, including sepsis [26]. In this study, we use the FHIR terminology, where an ‘Encounter’
is a single patient stay from admission to discharge and an ‘Observation’ is a time-related
measurement (vital sign, laboratory result, . . .).

2.2. Procedures

The ML model was constructed using a gradient boosted trees approach, trained with
the data of a first cohort called the “training dataset”, then validated with a set of data from
another cohort of patients called the “study dataset”.

2.2.1. Predictors and Other Variables

Three types of variables were collected for the development of the algorithm: temporal,
medical history, and demographic. The selection of these variables was based on the review
of the existing literature [16] and determined in collaboration with an expert physician. It
was also driven by a combination of relevance, data quality, and availability in the electronic
health record (EHR).

For time-related data, 15 predictors were selected:

• Vital signs (heart rate—HR, respiratory rate—RR, diastolic blood pressure—DBP,
systolic blood pressure—SBP, oxygen saturation—SpO2, and body temperature);

• Laboratory values (creatinine, lactate, white blood cells—WBC, platelets, bilirubin,
diuresis, partial pressure of oxygen—PaO2, and fraction of inspired oxygen—FiO2);

• Assessment of level of consciousness (Glasgow Coma Scale—GCS).

Medical history, consisting of ICD-10 codes to determine existing comorbidities, were
also included as variables.

Finally, the patient’s age, gender, and month of hospital admission were added.

2.2.2. Outcome Variables

Sepsis patients were binary classified as non-sepsis and sepsis cases in the datasets.
Thus, the outcome variable is the presence of sepsis, and the output of the model is the prob-
ability that the selected window ends with the onset of sepsis. While the Sepsis-3 definition
represents the most recent consensus on sepsis classification, it presents limitations for early
detection purposes. Due to the methodological challenges in precisely determining sepsis
onset, particularly in case of preventive antibiotic treatments or microbiology, the gold
standard for Encounter classification in the training dataset was the presence of ICD-10
codes corresponding to sepsis in the medical record (Table 1). The decision to prioritize
classification certainty over exhaustiveness was particularly crucial during the learning
phase of the model development, as the accuracy of the training data directly impacts
model performance. The prognosis of sepsis was determined with the SOFA scoring sys-
tem, which is based on six sub-scores (from 0—normal to 4—most abnormal) assessing
the respiratory, neurological, cardiovascular, hepatic, renal, and coagulation systems [9].
The time of “sepsis onset” was defined as a 2-point increase in SOFA score. In the study
dataset, all suspected sepsis (flagged by ICD-10 codes) were retrospectively reviewed by a
medical expert, who provided a clear decisive opinion, ensuring high homogeneity in the
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reviews, which is crucial for aligning the model with clinical objectives. The gold standard
for labelling sepsis cases was the expert’s judgement, based on a critical review of the
patient’s medical record. The physician also gave an exact time of onset of sepsis, later
called “expert onset”.

Table 1. Sepsis coding.

Sepsis Class Corresponding ICD-10 Codes

Septic shock R572

Severe sepsis R651

Sepsis

A021, A227, A267, A327, A427, B377, O85, A400, A401,
A402, A403, A408, A409, A410, A411, A412, A413, A414,
A415, A418, A419, P3600, P3610, P3620, P3630, P3640,
P3650, P3680, P3690

Note: ICD-10 code corresponding to severe sepsis should not be employed anymore (since 2021) and Encounters
where sepsis was coded with an outdated ICD-10 code (R651) were excluded from the dataset.

2.2.3. Preprocessing of the Datasets

Preprocessing of the extracted raw data was required before the datasets could be
fed into the ML algorithm. The preprocessing steps consisted of the following: (i) In
the case of multiple Encounters for a patient, each Encounter was considered separately;
(ii) Time-stamped data were binned to round hours, using the last available Observation
value; (iii) Missing values were imputed using a simple fill-forward strategy (the last known
value is propagated until a new value is available); (iv) Temporal predictors were derived
from a single 3 h period, spanning 2 h before and up to the onset of sepsis; (v) Metrics
were calculated over the 3 h periods (means with standard deviation, median, minimum,
and maximum, last value). The 3 h window of the preprocessing step was selected as
the best performing set of parameters from a pool of possible values, as described in
Section 2.2.6. For non-septic patients, a time point was selected randomly during the
hospital stay following a Pareto distribution (Type II, with α = 20 and λ = 1). With this
distribution, “non-septic time points” are more often selected in the beginning of the patient
stay, simulating the distribution of sepsis onsets, which is displayed in Figure 1.

Diagnostics 2025, 15, 302 4 of 17 
 

 

retrospectively reviewed by a medical expert, who provided a clear decisive opinion, 

ensuring high homogeneity in the reviews, which is crucial for aligning the model with 

clinical objectives. The gold standard for labelling sepsis cases was the expert’s judgement, 

based on a critical review of the patient’s medical record. The physician also gave an exact 

time of onset of sepsis, later called “expert onset”. 

Table 1. Sepsis coding. 

Sepsis Class Corresponding ICD-10 Codes 

Septic shock R572 

Severe sepsis R651 

Sepsis 

A021, A227, A267, A327, A427, B377, O85, A400, A401, A402, A403, 

A408, A409, A410, A411, A412, A413, A414, A415, A418, A419, 

P3600, P3610, P3620, P3630, P3640, P3650, P3680, P3690 

Note: ICD-10 code corresponding to severe sepsis should not be employed anymore (since 2021) 

and Encounters where sepsis was coded with an outdated ICD-10 code (R651) were excluded from 

the dataset. 

2.2.3. Preprocessing of the Datasets 

Preprocessing of the extracted raw data was required before the datasets could be 

fed into the ML algorithm. The preprocessing steps consisted of the following: (i) In the 

case of multiple Encounters for a patient, each Encounter was considered separately; (ii) 

Time-stamped data were binned to round hours, using the last available Observation 

value; (iii) Missing values were imputed using a simple fill-forward strategy (the last 

known value is propagated until a new value is available); (iv) Temporal predictors were 

derived from a single 3 h period, spanning 2 h before and up to the onset of sepsis; (v) 

Metrics were calculated over the 3 h periods (means with standard deviation, median, 

minimum, and maximum, last value). The 3 h window of the preprocessing step was 

selected as the best performing set of parameters from a pool of possible values, as 

described in Section 2.2.6. For non-septic patients, a time point was selected randomly 

during the hospital stay following a Pareto distribution (Type II, with α = 20 and λ = 1). 

With this distribution, “non-septic time points” are more often selected in the beginning 

of the patient stay, simulating the distribution of sepsis onsets, which is displayed in 

Figure 1. 
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Figure 1. Distribution of time of sepsis onset from admission (expressed in days).

2.2.4. Training Dataset

To build the training dataset, we extracted 45,127 Encounters from patients hospital-
ized between 6 February 2020 and 31 July 2021 (Figure 2). Patients diagnosed with sepsis
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were identified based on the registration of ICD-10 codes, mentioned in the EHR. The
rule used to define the onset of sepsis was the first 2-point increase in the SOFA score as
the primary objective of this study was to develop an early detection system for sepsis.
The 3 h periods were then set for the temporal predictor variables. Patients were selected
based on the eligibility criteria (Figure 2) and a preprocessing procedure was applied to the
extracted data. Finally, the training dataset included a total of 26,652 Encounters with a
sepsis prevalence of 4.9% (n = 1308 sepsis).
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2.2.5. Study Dataset

The algorithm was then validated in another retrospective cohort of hospitalized pa-
tients. To build the study dataset, we extracted 9310 Encounters from patients hospitalized
between 1 August 2021 and 30 November 2021 (Figure 3). After verification of eligibility
criteria, the final study dataset included 5270 Encounters of which 121 sepsis patients (2.3%)
identified by ICD-10 codes were confirmed by an expert physician. The date and time of
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the first signs of sepsis were determined after a complete review of the patients’ medical
records (i.e., anamnestic parameters, clinical parameters (semiology, vital parameters),
biological parameters, time of blood culture collection, and time of blood culture positivity).
Among the 121 Encounters of septic patients, 77 sepsis events were reported at admission,
and 44 sepsis events were identified during hospitalization.
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As with the training dataset, 3 h periods were selected for temporal predictors and the
data were then pre-processed to create the final dataset.
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2.2.6. Implementation Details on SEPSI Score

The binary classifier SEPSI Score (inpatients classified as having or not having sepsis)
was constructed using a gradient boosted trees approach and a simple binary logistic
loss function, implemented in Python software (v 3.10.8, [27]) using the XGBoost library
(v 1.7.3, [28]). Tree-based models such as XGBoost are still state-of-the-art for medium-
sized tabular datasets [29]. The hyperparameters were the default XGBoost parameters
except colsample by tree (0.8), with a learning rate of 0.3 and a maximum tree depth
of 6. As mentioned in the preprocessing section, a window length of 3 h was used for
time-related variables.

All these parameters (for the preprocessing steps, the resampling and ML model) were
found after an hyperparameter search on the training dataset. This optimization process
allowed to select the best performing set of parameters from a pool of possible values. For
example, the 3 h window of the preprocessing step was selected from the set of 3 h, 6 h,
and 12 h window sizes.

A stratified shuffle split was performed to extract 10% of the training dataset as the
test set and a stratified 5-fold cross-validation was performed on the remaining 90% to
estimate the generalization ability of the model. This stratified shuffle split was created
such that prevalence was identical in training and test datasets (4.9%).

Predictions of SEPSI Score were generated using all the data described above and, in
parallel, an expert physician performed sepsis prediction based on the same parameters.
All scores were calculated every hour.

2.3. Evaluation of the Model

For comparisons, three time points were considered: in septic Encounters, the time of
“sepsis onset” defined as a 2-point increase in SOFA score and the time of “expert onset”
defined as the time of medically confirmed onset; in non-septic Encounters, the random
“time point”.

2.3.1. Performance Metrics

All performance metrics of SEPSI Score model reported in the manuscript are com-
puted on the defined window (first degradation detected through SOFA score for sepsis
patients and random window for non-sepsis). The performance of SEPSI Score was evalu-
ated in terms of specificity, positive predictive value, and sensitivity at the time of sepsis
onset, and other metrics as described below.

The ROC (receiver operating characteristic) curve represents the interaction between
sensitivity and specificity. AUROC is the area under the receiver operating characteristic
curve at the time of sepsis onset. The area under this curve represents the overall accuracy
of a test, with a value approaching 1.0 indicating a high sensitivity and specificity. As the
dataset was imbalanced (less than 5% of sepsis cases), we also considered as performance
metrics the more informative PRC (precision–recall curve) at sepsis onset [30]. AUPR is
the area under the precision–recall curve at the time of sepsis onset. The PRC plot shows
positive predictive values for corresponding sensitivity values. It is like the AUROC but
while the baseline is fixed with ROC, the baseline of PRC is determined by the ratio of
positives and negatives.

Other metrics, such as F1 score (harmonic mean of positive predictive value and
sensitivity), accuracy, negative predictive value, miss rate (false negative rate), and fall-out
(false positive rate) were also calculated to evaluate the model performance.

A single prediction was performed for each patient Encounters but as cross-validation
was used during training, we have access to multiple models, one for each fold. Thus, these
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models were used to compute metrics on the held-out study dataset. We then calculated
the mean and standard deviation for each of the metrics mentioned above.

2.3.2. Comparison with Existing Scores

The classification performance of SEPSI Score was then compared with the currently
used scoring systems, SOFA score, MEWS, qSOFA, and SIRS criteria, which are commonly
used by clinical practitioners to diagnose sepsis and predict mortality due to infection.
These scores were calculated at hourly intervals across all patient Encounters in the dataset.
The scores were calculated in the same time windows as those generated by the SEPSI
Score, and their base value is 0. For comparative analysis with the SEPSI score machine
learning models, the time point considered was the last time point of the window for which
SEPSI Score generated an alert for the risk of sepsis. Positive predictions of the currently
used scoring systems were based on their respective thresholds, i.e., a difference of 2 points
for SOFA, a difference of 3 points for MEWS, the presence of 2 criteria for qSOFA and the
presence of 2 criteria for SIRS.

2.3.3. Detection of Early Sepsis Onset

The early detection of sepsis risks leading to the improvement of patient clinical
outcomes, was evaluated 3 h before sepsis onset. Predictions up to 3 h before sepsis onset
were computed for both sepsis and non-sepsis Encounters to determine AUROC and
AUPR metrics, as previously described [18]. The predictive capabilities of SEPSI Score
were compared with existing scores at the same time point. The targeted value was set
at: AUROC3h before sepsis onset = 0.70 ± 0.15, based on the state of the art.

The AUPR metric was also considered up to 3 h before sepsis onset [30].
The time of sepsis onset estimated by the SEPSI Score was further analyzed excluding

sepsis present on admission to focus only on sepsis diagnosed during hospitalization
(n = 44). The delay between the sepsis onset (defined as the time of the first degradation
detected through SOFA score for sepsis patients) and the expert onset (the time of sepsis
onset which was validated by the physician, based on the review of the patients’ medical
records and its own experience) was then considered. The number of patients Encounters
who were detected for sepsis at least 48 h before their medically confirmed onset (expert
onset) was then determined, among these 44 Encounters.

2.3.4. Statistical Analysis

We aimed to demonstrate a minimum effect size of 0.05 with an alpha risk of 0.05 and
a beta risk of 0.05, using a t-test for comparison of means. Based on these parameters, a
minimum sample size of 4331 was calculated.

All statistical analyses were performed using Python software with the pandas
(v 1.5.3, [31]) and scipy (v 1.12.0, [32]) libraries. Continuous data were described as mean
(SD) or median (Q1–Q3 or min–max) and categorical data were presented as frequencies
(percentages). p-values were calculated using a binomial test adjusted by the Benjamini–
Hochberg method.

2.4. SEPSI Score Among Other Advanced ML Models

Recent advances in machine learning have yielded several commercial sepsis predic-
tion systems, each employing distinct methodologies and demonstrating varying levels of
performance. Among these, notable solutions include InSight® by Dascena (San Francisco,
CA, USA) a machine learning system for sepsis prediction, first evaluated on the MIMIC-III
ICU dataset, which demonstrated good performance metrics (AUROC: 0.880, APR: 0.595
Sensitivity: 0.80, Specificity: 0.80) [21]; Sepsis ImmunoScore™ (Prenosis, Chicago, IL, USA),
employing a 22-parameter analysis system (AUROC: 0.83, AUPR: 0.61) [33]; NAVOY®
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(AlgoDx AB, Stockholm, Sweden) an ICU-focused system showing reliable performance
(sensitivity: 0.80, specificity: 0.78) [19]; and VFusion™ Sepsis by Vivace Health Solutions
(Cardiff, CA, USA), which achieves impressive accuracy metrics (AUC: 0.91, sensitivity:
0.814, specificity: 0.88) [34]. Direct performance comparisons between existing machine
learning systems for sepsis prediction should be interpreted with caution due to their
different clinical contexts and validation settings [17]. Therefore, the performance metrics
of the SEPSI Score will only be discussed with respect to those of the other ML solutions
described in the scientific literature, as opposed to the comparative analysis with currently
used scoring systems such as SOFA, qSOFA, MEWS, and SIRS.

3. Results
3.1. Study Cohort Characteristics

The study dataset consisted of 5270 Encounters, with a total of 121 cases of sepsis.
Aggregated patient demographics at inclusion were a mean age of 65.7 (17.4) years and
50.2% of male (Table 2).

Table 2. Study cohort characteristics.

Sepsis
Encounters
(N = 121)

Non-Sepsis
Encounters
(N = 5149)

Demographics

Age Mean ± SD 69.8 ± 12.7 65.6 ± 17.5
Male N (%) 72 (59.5) 2575 (50.0)
Female N (%) 49 (40.5) 2574 (50.0)

Vital signs

HR (beats per minute) Mean ± SD 85.6 ± 19.7 81.0 ± 17.6
Hours between measurements Mean 5 7

Body temperature (◦Celsius) Mean ± SD 37.1 ± 0.8 36.9 ± 0.7
Hours between measurements Mean 6 8

RR (breaths per minute) Mean ± SD 21.7 ± 5.7 21.2 ± 6.1
Hours between measurements Mean 13 56

DBP (mmHg) Mean ± SD 67.2 ± 14.9 70.9 ± 15.1
Hours between measurements Mean 5 7

SBP (mmHg) Mean ± SD 126.1 ± 22.1 128.6 ± 22.2
Hours between measurements Mean 5 7

SpO2 (%) Mean ± SD 96.5 ± 2.5 96.6 ± 2.6
Hours between measurements Mean 6 9

Level of consciousness

GCS score Mean ± SD 10.1 ± 5.2 11.4 ± 5.2
Hours between measurements Mean 16 96

Laboratory results

Creatinine (mg/L) Mean ± SD 18.3 ± 15.6 12.3 ± 12.0
Hours between measurements Mean 37 48

Lactate (mg/L) Mean ± SD 213.6 ± 255.5 180.0 ± 172.4
Hours between measurements Mean 1655 3134

WBC (mg/dL) Mean ± SD 11.6 ± 9.7 9.8 ± 7.6
Hours between measurements Mean 40 54

Platelet count (×109/L) Mean ± SD 218.2 ± 146.7 258.7 ± 119.2
Hours between measurements Mean 40 54
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Table 2. Cont.

Sepsis
Encounters
(N = 121)

Non-Sepsis
Encounters
(N = 5149)

Bilirubin (µmol/L) Mean ± SD 22.2 ± 36.7 11.5 ± 26.5
Hours between measurements Mean 72 105

Diuresis (mL) Mean ± SD 409.3 ± 670.3 466.7 ± 563.5
Hours between measurements Mean 9 22

PaO2 (mmHg) Mean ± SD 90.5 ± 34.9 86.7 ± 39.0
Hours between measurements Mean 54 247

FiO2 (%) Mean ± SD 42.5 ± 21.0 45.9 ± 22.6
Hours between measurements Mean 69 525

Length of hospital stay

Day(s) Median 16.7 5.9
Q1; Q3 10.1; 24.9 3.7; 9.5

The most common comorbidities in the study cohort were cardiovascular disease
(38.9%), mental health disorder (19.4%), cancer (16.7%), diabetes (15.3%), and previously
diagnosed sepsis (14.3%). In the sepsis subpopulation, the top five comorbidities were
identical (although in a different order), but with a higher prevalence than in non-sepsis
patients (Figure 4). The differences in the prevalence of comorbidities were all statistically
significant at the 0.05 level, except for HIV and renal disease.
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Some vital signs were obtained immediately after admission, with a mean delay
of 3 h for HR, temperature, and BP. Vital signs were recorded frequently (on average
every 5 to 56 h), but laboratory results were not regularly available, with delays between
measurements of days (creatinine, white blood cells, platelets, bilirubin, and diuresis) or
weeks (lactate, PaO2, and FiO2) (Table 2). The mean length of hospital stay was higher
for sepsis reported during hospitalization (16.7 days versus 5.9 days, Table 2) and the
time of sepsis onset appeared to be within the first 3 days after admission for 75% of
sepsis Encounters.

3.2. Performance Metrics of the Model

The performance metrics of the model developed with the training dataset demon-
strated its ability to correctly classify sepsis-positive cases (positive predictive value: 0.752
[0.015], sensitivity: 0.855 [0.022], specificity: 0.985 [0.001], AUROC: 0.993 [0.001], AUPR
0.873 [0.015]).

The SEPSI Score algorithm was then validated in the study dataset and showed both a
high sensitivity of 0.845 [0.018], and a high specificity of 0.987 [0.001] for the detection of
sepsis (Table 3). Thanks to the multiple models trained during cross-validation, we were
able to provide a mean ± SD for SEPSI Score on the held-out study dataset, opposite of
SOFA, qSOFA, SIRS, and MEWS scores for which the computation was unique. SEPSI Score
was reliable in correctly classifying sepsis with a mean positive predictive value of 0.610
[0.018], exceeding the performance of competing scores SOFA, qSOFA, SIRS, and MEWS
(0.174, 0.175, 0.070, and 0.108, respectively, Table 3).

Table 3. Performance metrics of SEPSI Score versus commonly used scores to classify sepsis. Bold
indicates the best value per metric.

Study Dataset
N = 5270

121 Sepsis/5149 Non-Sepsis

SEPSI Score SOFA qSOFA SIRS MEWS

AUROC

Mean ± SD 0.992 ± 0.001 0.944 0.537 0.628 0.617

Median 0.992 - - - -

Min; Max 0.992; 0.993 - - - -

AUPR

Mean ± SD 0.738 ± 0.029 0.174 0.036 0.041 0.048

Median 0.728 - - - -

Min; Max 0.711; 0.775 - - - -

Positive predictive value

Mean ± SD 0.610 ± 0.018 0.174 0.175 0.070 0.108

Median 0.606 - - - -

Min; Max 0.593; 0.640 - - - -

Sensitivity

Mean ± SD 0.845 ± 0.018 1.000 0.083 0.372 0.289

Median 0.851 - - - -

Min; Max 0.826; 0.868 - - - -

Specificity

Mean ± SD 0.987 ± 0.001 0.889 0.991 0.884 0.944

Median 0.987 - - - -

Min; Max 0.986; 0.989 - - - -

F1 score

Mean ± SD 0.708 ± 0.013 0.297 0.112 0.118 0.158

Median 0.705 - - - -

Min; Max 0.699; 0.730 - - - -
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Table 3. Cont.

Study Dataset
N = 5270

121 Sepsis/5149 Non-Sepsis

SEPSI Score SOFA qSOFA SIRS MEWS

Accuracy

Mean ± SD 0.984 ± 0.001 0.891 0.970 0.872 0.929

Median 0.984 - - - -

Min; Max 0.983; 0.986 - - - -

Negative predictive value

Mean ± SD 0.996 ± 0.000 1.000 0.979 0.984 0.983

Median 0.996 - - - -

Min; Max 0.996; 0.997 - - - -

Miss rate
(false negative rate)

Mean ± SD 0.155 ± 0.018 0.000 0.917 0.628 0.711

Median 0.149 - - - -

Min; Max 0.132; 0.174 - - - -

Fall-out
(false positive rate)

Mean ± SD 0.013 ± 0.001 0.111 0.009 0.116 0.056

Median 0.013 - - - -

Min; Max 0.011; 0.014 - - - -

The juxtaposition of the ROC curves plotting the true positive rates against the false
positive rates of the SEPSI Score algorithm and of the aforementioned scores, demonstrates
the advantage of our model (Figure 5a).

Diagnostics 2025, 15, 302 12 of 17 
 

 

 

(a) (b) 

Figure 5. ROC-related metrics for ML models and existing scores: (a) ROC curves at sepsis onset for 

ML model, existing scores, and random model; (b) AUROC metrics up to 3h before sepsis onset for 

ML model and existing scores. 

Considering the PRC curves (Figure 6a), the positive predictive value of qSOFA, 

MEWS and SIRS decreased dramatically with increasing sensitivity, whereas the high 

positive predictive value of SEPSI Score remained constant for sensitivity values from 0.2 

to 0.8. At the onset of sepsis, the AUPR value (with a baseline of 0.023) was 0.738 for SEPSI 

Score versus 0.174 for SOFA, 0.036 for qSOFA, 0.041 for SIRS, and 0.048 for MEWS (Figure 

6b). 

 

(a) (b) 

Figure 6. Precision–recall-related metrics for ML model and existing scores: (a) PRC at sepsis onset 

for ML model, existing scores, and random model; (b) AUPR metrics up to 3h before sepsis onset 

for ML model and existing scores. 

3.3. Detection of Early Sepsis Onset 

Furthermore, up to 3 h before the onset of sepsis, SEPSI Score was consistently more 

accurate than any of the scores tested, as shown by the AUROC curves (Figure 5b). These 

results show that the predictive capabilities of SEPSI Score, AUROC3h before sepsis onset = 0.74, 

were higher that the predictive capabilities of the SOFA (AUROC3h before sepsis onset = 0.46), the 

SIRS (AUROC3h before sepsis onset = 0.59), the MEWS (AUROC3h before sepsis onset = 0.56) and the 

qSOFA (AUROC3h before sepsis onset = 0.52). Moreover, the predictive capabilities were also 

higher than the limits identified from the state of the art (AUROC3h before sepsis onset = 0.70 ± 
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ML model and existing scores.

Considering the PRC curves (Figure 6a), the positive predictive value of qSOFA, MEWS
and SIRS decreased dramatically with increasing sensitivity, whereas the high positive
predictive value of SEPSI Score remained constant for sensitivity values from 0.2 to 0.8. At
the onset of sepsis, the AUPR value (with a baseline of 0.023) was 0.738 for SEPSI Score
versus 0.174 for SOFA, 0.036 for qSOFA, 0.041 for SIRS, and 0.048 for MEWS (Figure 6b).
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3.3. Detection of Early Sepsis Onset

Furthermore, up to 3 h before the onset of sepsis, SEPSI Score was consistently more
accurate than any of the scores tested, as shown by the AUROC curves (Figure 5b). These
results show that the predictive capabilities of SEPSI Score, AUROC3h before sepsis onset = 0.74,
were higher that the predictive capabilities of the SOFA (AUROC3h before sepsis onset = 0.46),
the SIRS (AUROC3h before sepsis onset = 0.59), the MEWS (AUROC3h before sepsis onset = 0.56)
and the qSOFA (AUROC3h before sepsis onset = 0.52). Moreover, the predictive capabilities
were also higher than the limits identified from the state of the art
(AUROC3h before sepsis onset = 0.70 ± 0.15). Thus, up to 3 h before sepsis onset, sepsis detec-
tion by SEPSI Score was constantly more accurate than all tested scores.

When focusing only on subpopulation of sepsis diagnosed during hospitalization
(n = 44), close to 75% (n = 32) of sepsis onsets were detected by the SEPSI Score algorithm
earlier than estimated by the expert physician. Moreover, half (n = 21) of sepsis cases were
detected by SEPSI Score at least 48 h before their medically confirmed onset (expert onset).

4. Discussion
The performance metrics of SEPSI Score are considerable and demonstrate the ability of

the model to confidently detect early sepsis onset. The positive predictive value, sensitivity
and specificity achieved by the model show not only the correct detection of a large majority
of sepsis cases, but also the low number of false positives. Indeed, sensitivity is particularly
important in sepsis detection because missing sepsis cases can lead to delays in treatment,
resulting in worse patient outcomes. The very high specificity of SEPSI Score involves a
lower risk of unnecessary interventions, such as administering antibiotics or triggering
the sepsis protocol for non-septic patients. Reducing false positives is crucial in real-
world settings to avoid the risk of alarm fatigue and its potential consequences such as
over-treatment and resource wastage [21,35].

Moreover, SEPSI Score showed a better performance than the scores commonly used
in standard clinical practice to assess sepsis, such as SOFA, qSOFA, SIRS, and MEWS scores.
When comparing the SEPSI Score model with existing Early Warning Scores, the specificity
shows its limits in this unbalanced setting. Indeed, while these commonly used scores
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achieved a high specificity, their positive predictive value metrics were comparatively low.
This highlights the difference in interpretation between specificity and positive predictive
value in the context of an unbalanced dataset [30]. This low positive predictive value
also means that eight to nine out of ten alerts can be expected to be false if used for
sepsis detection in everyday hospital practice. Therefore, we advocate the inclusion of the
positive predictive value metric, or minority class-focused metrics such as AUPR, in sepsis
prediction model performance tables.

Other machine learning algorithms have been developed these last few years for
predicting sepsis in hospitals, mainly in ICU, and have also shown better predictive abilities
compared to current conventional scoring system [16,18,36–39]. Indeed, InSight® and
Navoy® models were both able to detect sepsis in ICU patients with sensitivities of 0.80
and 0.80, and specificities of 0.80 and 0.78 respectively [19,21]. SEPSI Score sensitivity
and specificity (0.845 and 0.987 respectively) can thus be considered as very respectable
performance metrics when compared to those of the previously cited models. In the same
way, Persson et al. in their recent prospective study reported lower positive predictive value
and accuracy than those of SEPSI Score [19]. The AUROC and the AUPR measured for the
SEPSI Score also showed more interesting values when compared with the same metrics
reported for another model, the Sepsis ImmunoScoreTM, in a prospective observational
cohort study [33]. SEPSI Score thus showed better performance metrics than the above
cited existing models although they are not fully comparable. Indeed, most of them have
been evaluated only in prospective ICU settings [40], whereas SEPSI Score has shown
its performance in a wide range of departments from a single hospital, in a retrospective
setting. The other ML models have then a limited application to ICU patients, leading
to a poor generalizability of the models and limiting their implementation in clinical
practice [39]. SEPSI Score is the first model to our knowledge that has been built using
data from hospital inpatients from all medical services and is therefore promising to have a
better generalizability in clinical practice than the existing ones.

Another important point is that sepsis detection by SEPSI Score was more accurate
(AUROC3h before sepsis onset = 0.74) than all tested scores up to 3 h before sepsis onset. A
recent study has shown that Navoy® algorithm was also able to predict sepsis 3 h before
onset with a high performance (AUROC of 0.80) [19]. However, this latter prediction was
limited to ICU patients. Moreover, the ability of SEPSI Score to predict for some patients,
the onset of sepsis up to 48 h in advance must be highlighted, as this is a critical window for
initiating timely interventions to prevent severe sepsis and septic shock. VFusionTM Sepsis
also seems to be able to detect sepsis onset 24 to 48 h before usual care baselines. However,
their application is limited to ICU patients, and to our knowledge their results are stated
by their website only and not published yet [34]. The other predictive models described
in the scientific literature usually focus on detecting sepsis onset 3 to 6 h before clinical
recognition, which is still valuable but does not offer the same extended predictive win-
dow [19]. The 48 h-early prediction of sepsis obtained with SEPSI Score may provide a more
proactive approach, offering clinicians a larger window for intervention and improving
patient outcomes.

Resource requirements and potential barriers such as the integration with existing EHR
systems and clinical training to implementing the SEPSI Score in real-world clinical settings
were analyzed. The initial extraction of data was done in the international standards
HL7 FHIR, and therefore facilitates generalization and integration of the SEPSI Score with
existing EHR systems. Moreover, the SEPSI Score tool has been developed with a team of
clinicians so that it can be used very easily, without extensive training.

Although this study shows promising results for the prediction of sepsis in the hos-
pital, some limitations remain. Indeed, the training and validation settings are favorable
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to the ML model by selecting time windows for sepsis Encounters at the onset of sepsis,
whereas random time windows are selected for non-sepsis Encounters, following a Pareto
distribution. To date, many models have been validated on open access databases in the
United States [17]. By developing SEPSI Score on datasets like French real-world medical
data, we believed that its predictive capabilities would be reproducible and generalizable
to other hospital databases. In the present study, the approach aimed at assessing the
performance of SEPSI Score before targeting on demonstration of effects on clinical out-
comes. This is why this first study on the model only took place in a single hospital center,
which provided both the training and validation datasets. This current retrospective design
limits our understanding of real-world effectiveness, which would be better evaluated
through a prospective study. Indeed, now that the high sensitivity and specificity of the
model have been retrospectively demonstrated, a prospective study with integration of
SEPSI Score in the daily routine, including several hospital centers, should be carried out to
assess the improvement of treatments and outcomes of patients with sepsis, such as those
demonstrated with InSight® algorithm [20,22].

5. Conclusions
The ability of the algorithm to accurately detect sepsis and predict its early onset has

been validated for the first time in a retrospective setting in all departments of a French
hospital, with performance metrics exceeding those of currently used tools. Although a
further study of the model in a prospective multicenter setting is needed to confirm the
model’s robustness and generalizability and its positive clinical outcomes, SEPSI Score
seems to be very promising in reducing sepsis-related morbidity and mortality.
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